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Vanderbilt-NEPP Work 2017-2018 FY

Vanderbilt Engineering

|. Project I. Continue development of the SEAM platform
 Coverage checks
 Incorporation of Requirements in SysML and GSN
* Develop interface with industry standard SysML tool

Il. Project Il: Maintenance, development of single event tools
« Creme/Creme MC
 R-Gentic
e Others

lll. Both: Plan integration path for existing tools and SEAM



Year 3 SEAM Task #1. Coverage Analysis

Vanderbilt Engineering

mm GSN Arguments
?m ﬂ* Functional Reliability Fault Tolerance, Mitigation
ﬁ“ " Eunctional Model € >System Design/ Fault Model

l ) - l Implementation J a'AWm heurnt

= _ ——A e I
* Coverage analysis A= =

_ S - S, E)
« tracing links between the SEAM models A

 identifying “incorrect” and /or “missing” links.
* Increasing model complexity and scale necessitates automation
* Checking links between SysML & GSN enforces GSN completeness
—
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SEAM Coverage Definition

Vanderbilt Engineering

GSN Arguments

Functional Reliability Fault Tolerance, Mitigation

Functional Model € >Sys’tem Design/ Fault Model

Implementation

“Coverage” in SEAM model is assessed by checking if each
* low-level function is associated with one or more components that implement it.
e component in the system model implements one or more functions.
e fault path in the system design is accounted for in a GSN argument.
* fault-effect traceable from a failure mode is accounted for in a GSN argument.
* fault-mitigation action traceable from a failure mode is accounted for in a GSN argument.




Coverage Matrix Screenshot: Parts List

Vanderbilt Engineering
SEAM » REM_Cowverage_ D > master >

b. O 4 O - NS

Clickable links that leads to the
part model
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Coverage Matrix Screenshot: GSN Coverage

eering
Farts List Instance List Function Coverage component Coverage 38N Coverage
)
Component Fault Effect Response G5 Node Tag Status Result Information Action ! Goal:22
Source COTS parts pass TID

requirement at 30

krads(5i02).
u22: Goal: 45 Mitigation Developed Yes Instance Completed -
LinearRegulator

P ———— I
TID Goal ; 42 I Radiation Developed Yfeg Fart Completed -
— o= = \C\heck
N . g
~. o

Link to GSN argument .

~

~

~

~

~

Goal:42

1.8V regulator passes TID
mission requirement:
Supply current <25mA
and output voltage is
1.6V<Vout<2y.

v

Selutien:15

Results from YUMC: No
noticeable changes at
40krads(5i02).




SEAM: Requirement Models

Vanderbilt Engineering

* SysML style Requirements modeling.
e Support SysML requirements relationships:
Sub-requirements
Refine relationship-refinement of another req.
Trace relationship between Red. and model element
- Copy of another requirement
- Verify relationship between Reg. and test case
- Satisfy if Req. is satisfied by a design element
e Allow Import/ Export Requirements Models to MagicDraw®©

—
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Example Requirements model in SEAM

Vanderbilt Engineering
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Next Steps: Requirements Coverage

Vanderbilt Engineering
e Coverage:

- Allow cross-linking requirement models with other SEAM models.
- Tracing requirements coverage

= Functional (operation and mitigation)
= Assurance arguments (radiation reliability).

® seam > nag/REM_Coverage_Demo  » master » CoverageTest

b O 4+ © 0. EHN

Farts List Instance List Function Coverage Component Coverage GEMN Coverange

New Entries to
Coverage Matrix
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Workflow of Spacecraft Modeling

Vanderbilt Engineering

< Mission Assurance —
Missi Envi Design Fault
ISSIQH nV|r-Or-]|-T]ent Functional Parts- Modelin Docu-men_
Planning Definition Design Selection g tation
\}Q(”Qo Berg SEU | SEAM: SysML, | GSN
Q O o <"« | NOVICE | Block diagram
N LK N Fault effects/
$ P & (O ¥ S SEAM: SysmL "au'te
& & NN S 5N mitigation
Q_,C” o Q7 ¥ v@ 2 Rad parts DB
> & & CREME/CREME MC
@29 Xapsos Prob. Env.

» Typical software apps for radiation design and assurance flow

» Concept can be generalized to thermal, vibration, etc.

« Eventually detect cross-domain interactions, e.g., thermal-electrical
—
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Software Modeling Tools

Vanderbilt Engineering

x1 yl yl z1
— ToolX —— ——> ToolY —
X2 y2 y2 z2
—  F1(x1,x2)— —  F2(yly2)—
Inputs Outputs Outputs

e Every tool “consumes” inputs and “produces” outputs
 l|deally the outputs from one tool could be sent directly
to the input of another tool.
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Document Centric Design and Assurance Flow

Vanderbilt Engineering

e.g., AP9 Outputs e.g., Creme Qutputs
x1 yl yl z1
—2> Tool X ——  ToolY
X y2 2 z2
— F1(x1,x2) y—> F2(yl,y2)
Inputs | |
\ 4 \ 4
Doc 1 Doc 2

e Outputs are stored in a document
e Have to be extracted from doc to use in next tool
e Problems with version control between documents
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Model-Centric Design and Assurance Flow

Outputs
x1 ! y1l
—>  Tool X —>
X2 y2 y2
—  F1(x1,x2) —
Inputs |

Tool Y
F2(y1l,y2)

z1

i

Z2

\ 4
yly?2

Centralized data base

z1l z2

 Inputs and outputs are stored in the same database
e Database can automatically track versions

Vanderbilt Engineering

Outputs
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Safety-Case Design and Assurance Flow

Vanderbilt Engineering

Outputs Outputs
x1 yl yl z1
_2. Tool X ; —  Tool Y
X y 2 22
— F1(x1,x2) y—> F2(yl,y2)

Inputs | v _l_L
1y2 z1 72
Centralized data base y‘ y‘ Link Link ‘ ‘
: V_oV
SEAM | sysmML Y. ¥ Lipk Ll P
Reqmts y yl y2— >yl y2 GsN Case

« Outputs from analysis tools used in SysML models
« Outputs from analysis tools: evidence in GSN case
» Links possible between database, SysML model, and GSN case
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Integration of Project Design Aspects

Vanderbilt Engineering

Central Repository for System and Design Information

» All design/assurance information resides on one
platform

 Need version control

Requirements also need to be incorporated

 Requirements can reside in SysML, GSN

Model Re-use

 Can have reusable templates for SysML, GSN

e Linking of components, libraries

Assurance case can be constructed throughout design and

assurance cycle

—
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CREME Website

Vanderbilt Engineering

« ISDE hosts the CREME tool suite for
predicting on-orbit error rates and
proton total ionizing dose in
microelectronics

 While there are multiple open-access
options available, none are U.S.-
based and controlled except for
CREME

 |ISDE maintains the code and
operation of CREME, ensuring trust
as well as continuing access

e Supports over 2000 users! or E——

10° 10 1 10° 1) | -
Kinetic Energy (MeV/nucleon) = |

Flux [me-s-sr-MeWnuc}

https://creme.isde.vanderbilt.edu

—
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CREME96 Toolsuite

Vanderbilt Engineering
* Near-Earth particle environment (Sawyer & Vette ‘76)

» Extracted from tables of AP8 proton fluxes
» User selects between solar minimum and solar maximum
e Geomagnetic shielding (Nymmik ‘91) [GTRN]
» Generates a geomagnetic transmission function (percent vs rigidity)
» User selects between quiet and stormy conditions
e Galactic cosmic ray environment (Nymmik '92) [FLUX]
* Relates GCR intensity to Wolf sunspot number
» Solar event based on Oct 1989 event, worst-week, worst-day and peak 5 min. fluxes
* Transport through spacecraft shielding [TRANS]
» Continuous slowing down approximation with nuclear fragmentation
* Linear energy transfer [LETSPEC]
* Folds space environment into LET spectrum
* Heavy-ion and proton upset rate predictions [HUP][PUP]

» Calculate on-orbit error rates using cross section curves
—
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CREME96 Toolsuite

Vanderbilt Engineering
* Near-Earth particle environment (Sawyer & Vette ‘76)

» Extracted from tables of AP8 proton fluxes

e User selects between solar minimum and solar maximum
e Geomagnetic shielding (Nymmik 91) [GTRN]

 (Generates a.geoma '

» User selects

e Value was mtegratlon
* Galactic cosm
+ Relates GC of too|sl

» Solar event 9@ E . =aay arerpeak 5 min. fluxes
 Transport through spacecraft shleldlng [TRANS]

» Continuous slowing down approximation with nuclear fragmentation
* Linear energy transfer [LETSPEC]

* Folds space environment into LET spectrum
* Heavy-ion and proton upset rate predictions [HUP][PUP]

» Calculate on-orbit error rates using cross section curves
—
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New CREME Configuration

Vanderbilt Engineering
 Performance issues have motivated upgrades to hardware, operating
system and content management system
» Transitioning tools from Plone 3 to Plone 4
« Fixed CREME products
- Translated database for user file storage

_ _ Hardware (2X):
* Moving to asynchronous tool execution « Pinnacle

CREME1 i CREME2 e 12 cores

. 128 GB DDR
| ' . 8TBHD
m . 240 GB SSD
“Ciert2
+ CREMESE S 0 ftW ar e :
e CentOS7
T  Plone4
Pt p=== « MRED-960

19



CREME API

Vanderbilt Engineering

* APIto access CREMEO96 calculations (CFDRC funded)

« API enables incorporation of tools into larger flow and decrease load on
web server

import sys
import xmlrpclib

# Read in fIx file
f=open(sys.argv[1],'r")
flx = f.read()

f.close()

proxy = xmlrpclib.ServerProxy(‘http://localhost:9000") # Connect to server

units=1
thickness=100
(tfx,out,err)=proxy.creme96.trans(flx,units,thickness) # Run transport

# Run PUP
devices=[
dict({"label":"foo", "comments":"", "method": 1, "A": 10, "bits_per_device": 1})

]

(pup,out,err)=proxy.creme96.pup(tfx,devices)
print pup

APl example

—
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CREME AP9 Interface

Vanderbilt Engineering

* New environment module provides interface to AP9 through CREME
(DTRA/NRL funded)

e Exposes short-time calculations of trapped proton environments
e Translates AP9 output into CREME compatible proton spectra

Site Map Accessibility Contact Ae9Ap9Gui v1.50.001 v (x
VANDERBILT UNIVERSITY School of Engineering E e ) e [ contgure v| ot
only in curent section
Orbit Specification Type Orbit Element Values
f *) Ephemeris File (Time+Pas) Element Time: [ 01 Jan 2015 00:00:00 UT |
/ ) Two-Line Element File Inclination (deg): [300 |
Home ][ News |[ Events |[ Users |[ Help |
2, admin My Folder Dashboard Preferences Sike Setup  Log out ) E 4 of fscend Nods (des) oe
You are here: Home / Users / admin ) Solar Elements Argument of Perigee (deg): oo |
‘ Contents | ‘ T | | Edit ‘ | Sharing | ) Classical Elements Eccentricity. oo |
CREMES6 ) Geosynchranous Mean Motion [reviday): [125 |
TRP 7) State Vectors Mean Anomaly (deg): [00 |
GTRN AP9
Orbit Propagator
FLUX -
) SatEph
TRANS — Trapped Proton Calculation: User-Supplied Parameters .
LETSPEC ) S22
HUP 1. Specify Orbit (SGP4 propagator): @ Kepler & Usel2 Ephemeris Name: !
PUP A. Mew Trapped Proton Spectra calculation with these orbital parameters:
DOSE
a. Time of ephemeris 2017/ o1/ o1 0o oo 00
Time of ephemeris (Y YYYmmidd HH MM:5S) Ephemeris Generation Time Range
CREMES6 —
b. Orbit start time 2017 / o1/ 01 0o : o0 : 00 Start Time: |01 12n 2015 00-00:00 UT [*
STASS Omit start ime (¥YYYmmidd HH:MM S S) — Parameters Changed
GEOMAG End Time: 01 Jan 2015 12:00:00 UT -
c. Orbit end time 2017/ o1/ o2 00 : L) oo L et |
| PP ——
LET Omit stop tme (¥ YYYimmidd HH:MM S 5) RS 0 R
SPEC
EENDEL d. Apogee: 500 km

—
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Introduction of Additional RHA Tools

Vanderbilt Engineering
e R-Gentic (Campola)

e Hosting IRAD-developed web-based tool

» Built and installed application at Vanderbilt
e TID Confidence Modeling (Xapsos)

» Attempting to reproduce published results from TNS 2017

» Built and installed AE9/AP9 for trapped electrons/protons, ESP for solar event
particles

 System Reliability (BerQ)
* Reviewing technical report

: P E‘oa = | ® oo W A = —
z e omarrm - : S 08 ; :' a o = i i e
S 207 = o ) nercne
el F 5_9 08 > inin = .
"T' = - .' = iy - - 05 - — ._ =
TEE === {]3 | =
- e 3 E o1 - ey - | 2
e 2 o g = == === = —
i 102 100 100 10 w 100 10 10° == : R e et

AP9
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Disjoint Mission Assurance Tools

Vanderbilt Engineering

D.u

102 107 100 10" 102 103 10¢ S L
Dose (krad-Si) : 2

TID Conf. Modelin AP9 GS

v
,+l"' . ® i —=— e
A i BRI - =i =
1 i
; - === o=
! 1 ! 8 Mien ki S =
e e = et R
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Integrated Radiation Suite

Vanderbilt Engineering

’ +1000 mils =500 mils =200 mils <100 mils oS50 mils 210 m-ls/ i
e oy o - )
S5 08 . e
Bo7 2
g 0.6 —
0.5 o
£ 04 @ S
™ 03] !
3 02 { i
£ 01} ] = E—— ==l
o 3 _ : e == S
102 10" 10° 10" 102 10° 10*  10° T Emees = 1
Dose (krad-Si) .

TID Conf. Modelin AP9 GSN
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More Than Data Sharing: What Do Links
Represent?

Vanderbilt Engineering

— A -
m-ls/ -r: : . I

_Jdependencies [

102 107 100 10" 102 10° 104 105
Dose (krad-Si)

TID Conf. Modelin AP9 GSN
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Radiation Hardness Assurance Tool Ecosystem

Vanderbilt Engineering
e Tools provide evidence for assurance case

e Explicit links provide traceability

AawApGu 150001
& 7 o] -
Goal:3 Strategy:8 Goal?. . | 202020200 p== e
System is tolerant to Isolate and contain faults ’ System recovers from - Welcome to the CREME site.
radiation-induced faults (NASA R&M). SELs. P—
and failures (NASA R&M
mod). A
ke ~Jeganal D
¢ Assumption:5 D . o~
= = A SEFl in the T ma
Strategy:2 Goal:6 microcontroller results in
- in th
Assure that system Physical and functional “Sﬂpi:gmmss hllns
includes necessary pathways for SEL fault e ey P
barriers and mitigati to pi ion or N s
keep anomalous events combination are limited ! =
from compromising the (NASA R&M). Goal8 = ——
ability to meet mission P
objectives (NASA R&M). A System detects SEFI in
microcontroller.
I + +1000 mils =500 mils =200 mils <100 mils 050 mils o10 mils
= = =2 = 0 ; o ”
Goal:4 Strategy:6 Strategy:10 1 = U3 g
: : : Evidence Z 08
System is able to recover Provide fault management Implement detection and ] 0.7
from anomalies affecting ’ (detection, active isolation, reset of a SEFl in the ﬁ ﬁ ‘2: :
functions that are recovery) capabilities microcontroller using o 0.6
inpokant o fop fevel (NASA R&M). Watchdog Timer (WDT) e 05
expectations (NASA R&M). 204
= .
= 03
2 0.2
7 E o1
Strategy:9 Goal:10 5 -
0
U%e FRAM l(:! store P :z:liem recovers from 1 0.2 1 0.1 1 OD 1 01 1 02 1 03 1 04 1 05
mlnrounntrn er ; in the Dose {krad-Si)
configuration and microcontroller,
experiment telemetry.

—
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webGME: Web/Cloud-based Collaborative
Modeling Infrastructure

Vanderbilt Engineering
« WebGME is a platform for building modeling tools

and model-based toolbenches w s
. . Concrerfsa\n: ual g ?
 Open source, in active development, >1073 users ¥ - ( m
 Web-based: all tools and project data reside on a SO L. =1
Tree | OeJecT CACHE |

web server, accessed via browser/client. Work

with all known modern browsers j{ %m, ebsackes
« Models and affiliated artifacts (‘assets’) are stored L
In a hlgh_performance’ add_only’ database [ Moo ApI . [ Mooe. API [ Nomeicamons || Queny Processia | g
. . . |GENERI( PLUGlNl | DSML Prucln | | DaTABASE ADAPTATION AND CACHE | v
* Full version control (linear and branching s
versioning, with support for merging)

e Multi-user, collaborative environment

. Implementation supports access to/invocation of ~ Nttps://webgme.org/ - Platform
other tools

https://modelbasedassurance.orq/
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Vision for a Tool Integration Architecture

Vanderbilt Engineering

engine tool data. r N engine tooldjtg
— -
tOOI #1 engine: editing, version artifact @ t00| #2
repository:

models,

control, etc.
\ tool coordinator ] i.L f
web server N

/
engine/ | tool.rjata I
L SEAM/WebG latform y

SEAM serves as the ‘model integration language’ that lin

models present in other tools

All tools are access via a web interface [Web client]
The workflow is facilitated by a ‘tool coordinator’ that

managers tool execution and artifact production/consumption

The t/c is also responsible for invoking translators as needed.

The artifact repository stores intermediate, final work products
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Summary

Vanderbilt Engineering

* An integrated radiation suite can compliment Model-Based Mission
Assurance by providing assurance case "evidence"

« Updates to CREME and deployment of new radiation tools will focus on
Interoperation and movement to a shared platform

« SEAM is developing into a platform that can support coverage analysis
and requirements traceability

« SEAM plus a common database represents an opportunity to integrate
outputs from physical modeling tools, either in radiation or other
physical domains

« EXxpansion to other disciplines in mission assurance and inclusion of
databases are welcome
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